Real-time randomized path planning for robot navigation
نویسندگان
چکیده
Mobile robots often find themselves in a situation where they must find a trajectory to another position in their environment, subject to constraints posed by obstacles and the capabilities of the robot itself. This is the problem of planning a path through a continuous domain, for which several approaches have been developed. Each has some limitations however, including requiring state discretizations, steep efficiency vs. accuracy tradeoffs, or the difficulty of adding interleaved execution. Rapidly-Exploring Random Trees (RRTs) are a recently developed representation on which fast continuous domain path planners can be based. In this work, we build a path planning system based on RRTs that interleaves planning and execution, first evaluating it in simulation and then applying it to physical robots. Our planning algorithm, ERRT (execution extended RRT), introduces two novel extensions of previous RRT work, the waypoint cache and adaptive cost penalty search, which improve replanning efficiency and the quality of generated paths. ERRT is successfully applied to a real-time multi-robot system. Results demonstrate that ERRT is significantly more efficient for replanning than a basic RRT planner, performing competitively with or better than existing heuristic and reactive real-time path planning approaches. ERRT is a significant step forward with the potential for making path planning common on real robots, even in challenging continuous, highly dynamic domains.
منابع مشابه
Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملImproved Path Planning in Highly Dynamic Environments Based on Time Variant Potential Fields
Introduction Planning collision-free paths is one of the basic skills for a mobile robot performing a goal-oriented task. Especially in highly dynamic environments such as robot soccer there is a need for smooth navigation avoiding the cooperating and competing players. Today, robots in RoboCup [5] are moving at speeds of up to 3 m/s. Navigation thus requires real time path planning considering...
متن کامل